FANDOM


$ \begin{align}0=P(1,16,8,(-8,8,4,8,2,2,-1,0))\end{align} $

$ \begin{align}0=P(1,64,6,(16,-24,-8,-6,1,0))\end{align} $

$ \begin{align} &0=P(1,2^{12},24,(0,0,2^{11},-2^{11},0,-2^9,256,-3\cdot2^8,0,0,-64,-128,0,-32,-32, \\ &-48,0,-24,-4,-8,0,-2,1,0)) \end{align} $

$ \begin{align} &0=P(1,2^{12},24,(2^{11},-2^{11},-2^{11},0,-2^9,-2^{10},-2^8,0,-2^8,-2^7,2^6,0,-32,32, \\ &32,0,8,16,4,0,4,2,-1,0)) \end{align} $

$ \begin{align} &0=P(1,2^{12},24,(-2^9,-2^{10},2^{10},7\cdot2^8,256,3\cdot2^8,64,3\cdot2^7,0,0,0,0,8,-32, \\ &-16,12,-4,4,-1,8,0,-1,0,0)) \end{align} $

$ \begin{align} &0=P(1,2^{12},24,(2^9,-2^{10},-2^9,256,0,256,64,3\cdot2^7,64,0,0,0,-8,-16,8,12,0,4, \\ &-1,2,-1,0,0,0))\end{align} $

$ \begin{align} &0=P(1,2^{12},24,(3\cdot2^9,-3\cdot2^{10},0,-256,0,0,192,3\cdot2^7,0,0,0,-64,-24,-48, \\ &0,-12,0,0,-3,2,0,0,0,0)) \end{align} $

$ \begin{align} &0=P(1,2^{12},24,(-2^{10},3\cdot2^9,2^9,256,128,128,-64,-192,0,32,0,32,16,16,-8,0, \\ &-2,-2,1,0,0,0,0,0)) \end{align} $

$ \begin{align} &0=P(1,2^{20},40,(0,2^{18},-2^{18},2^{17},0,-5\cdot2^{16},2^{16},-5\cdot2^{15},0,-2^{16}, \\ &-2^{14},2^{13},0,-5\cdot2^{12},-2^{14},-5\cdot2^{11},0,2^{10},-2^{10},-2^{11},0,-5\cdot2^8, \\ &256,-5\cdot2^7,0,64,-64,32,0,0,16,-40,0,4,16,2,0,-5,1,0)) \end{align} $

$ \begin{align} &0=P(1,2^{20},40,(2^{18},-2^{19},0,-2^{17},3\cdot2^{15},2^{16},0,0,2^{14},2^{13},0,-2^{13},-2^{12},2^{12},5\cdot2^{10}, \\ &0,2^{10},-2^{11},0,-2^9,-256,256,0,0,-96,-128,0,-32,-16,-24,0,0,4,-8,-5,-2, \\ &-1,1,0,0)) \end{align} $

$ \begin{align} &0=P(1,2^{20},40,(-2^{18},3\cdot2^{18},0,-2^{18},-13\cdot2^{15},0,0,5\cdot2^{15},-2^{14},2^{13},0,-2^{14},2^{12},0, \\ &5\cdot2^{10},5\cdot2^{11},-2^{10},3\cdot2^{10},0,3\cdot2^9,256,0,0,5\cdot2^7,13\cdot2^5,192,0,-64,16,40,0,40, \\ &-4,12,-5,-4,1,0,0,0)) \end{align} $

$ \begin{align} &0=P(1,2^{20},40,(2^{19},-3\cdot2^{19},2^{18},0,2^{19},3\cdot2^{17},-2^{16},0,2^{15},2^{16},2^{14},0,-2^{13}, \\ &3\cdot2^{13},2^{14},0,2^{11},-3\cdot2^{11},2^{10},0,-2^9,3\cdot2^9,-2^8,0,-2^9,-3\cdot2^7,2^6,0,-2^5,-2^6,-2^4, \\ &0,2^3,-3\cdot2^3,-2^4,0,-2,6,-1,0)) \end{align} $

$ \begin{align} &0=P(2,2^{12},24,(0,2^{10},-3\cdot2^{10},2^9,0,2^{10},0,9\cdot2^7,3\cdot2^7,64,0,128,0,16,48,72,0,16, \\ &0,2,-6,1,0,0)) \end{align} $

$ \begin{align} &0=P(2,2^{12},24,(-2^{11},0,17\cdot2^{11},-17\cdot2^{10},2^9,-15\cdot2^{10},-256,-63\cdot2^8,-17\cdot2^8, \\ &0,64,-5\cdot2^8,32,0,-17\cdot2^5,-63\cdot2^4,-8,-240,4,-68,68,0,-1,0)) \end{align} $

$ \begin{align} &0=P(2,2^{20},40,(2^{19},-3\cdot2^{20},-2^{18},13\cdot2^{18},3\cdot2^{20},-3\cdot2^{18},2^{16},-25\cdot2^{16},2^{15}, \\ &-3\cdot2^{16},-2^{14},13\cdot2^{14},-2^{13},-3\cdot2^{14},-3\cdot2^{15},-25\cdot2^{12},2^{11},-3\cdot2^{12},-2^{10}, \\ &-3\cdot2^{12},-2^9,-3\cdot2^{10},256,-25\cdot2^8,-3\cdot2^{10},-3\cdot2^8,-64,13\cdot2^6,-32,-192, \\ &16,-25\cdot2^4,8,-48,96,52,-2,-12,1,0)) \end{align} $

$ \begin{align} &0=P(3,2^{12},24,(2^{11},-19\cdot2^{11},5\cdot2^{14},-2^{11},-2^9,-23\cdot2^{10},256,-27\cdot2^{10}, \\ &-5\cdot2^{11},-19\cdot2^7,-64,-7\cdot2^9,-32,-19\cdot2^5,-5\cdot2^8,-27\cdot2^6,8,-23\cdot2^4,-4, \\ &-8,160,-38,1,0)) \end{align} $

$ \begin{align} &0=P(3,2^{60},120,(7\cdot2^{59},-3\cdot5^2\cdot2^{60},1579\cdot2^{57},-29\cdot2^{60},-3\cdot23\cdot31\cdot2^{56}, \\ &3\cdot5\cdot2^{60},7\cdot2^{56},67\cdot2^{59},-1579\cdot2^{54},-3\cdot5^2\cdot2^{56},-7\cdot2^{54}, \\ &-5\cdot11\cdot43\cdot2^53,-7\cdot2^53,-3\cdot5^2\cdot2^{54},3\cdot7\cdot13\cdot2^{52},67\cdot2^{55},7\cdot2^{51}, \\ &3\cdot5\cdot2^{54},-7\cdot2^{50},3\cdot631\cdot2^{49},1579\cdot2^{48},-3\cdot5^2\cdot2^{50},7\cdot2^{48}, \\ &53\cdot17\cdot2^{47},3\cdot23\cdot31\cdot2^{46},-3\cdot5^2\cdot2^{48},1579\cdot2^{45},-29\cdot2^{48},-7\cdot2^{45}, \\ &3\cdot5\cdot2^{48},7\cdot2^{44},67\cdot2^{47},-1579\cdot2^{42},-3\cdot5^2\cdot2^{44},-3\cdot23\cdot31\cdot2^{41}, \\ &-5\cdot11\cdot43\cdot2^{41},-7\cdot2^{41},-3\cdot5^2\cdot2^{42},-1579\cdot2^{39},-34\cdot13\cdot2^{39},7\cdot2^{39}, \\ &3\cdot5\cdot2^{42},-7\cdot2^{38},-29\cdot2^{40},-3\cdot7\cdot13\cdot2^{37},-3\cdot5^2\cdot2^{38},7\cdot2^{36}, \\ &53\cdot17\cdot2^{35},7\cdot2^{35},-3\cdot5^2\cdot2^{36},1579\cdot2^{33},-29\cdot2^{36},-7\cdot2^{33}, \\ &3\cdot5\cdot2^{36},3\cdot23\cdot31\cdot2^{31},67\cdot2^{35},-1579\cdot2^{30},-3\cdot5^2\cdot2^{32},-7\cdot2^{30}, \\ &-3\cdot5\cdot2^{33},-7\cdot2^{29},-3\cdot5^2\cdot2^{30},-1579\cdot2^{27},67\cdot2^{31},3\cdot23\cdot31\cdot2^{26}, \\ &3\cdot5\cdot2^{30},-7\cdot2^{26},-29\cdot2^{28},1579\cdot2^{24},-3\cdot5^2\cdot2^{26},7\cdot2^{24},53\cdot17\cdot2^{23}, \\ &7\cdot2^{23},-3\cdot5^2\cdot2^{24},-3\cdot7\cdot13\cdot2^{22},-29\cdot2^{24},-7\cdot2^{21},3\cdot5\cdot2^{24}, \\ &7\cdot2^{20},-34\cdot13\cdot2^{19},-1579\cdot2^{18},-3\cdot5^2\cdot2^{20},-7\cdot2^{18},-5\cdot11\cdot43\cdot2^{17}, \\ &-3\cdot23\cdot31\cdot2^{16},-3\cdot5^2\cdot2^{18},-1579\cdot2^{15},67\cdot2^{19},7\cdot2^{15},3\cdot5\cdot2^{18}, \\ &-7\cdot2^{14},-29\cdot2^{16},1579\cdot2^{12},-3\cdot5^2\cdot2^{14},3\cdot23\cdot31\cdot2^{11},53\cdot17\cdot2^{11}, \\ &7\cdot2^{11},-3\cdot5^2\cdot2^{12},1579\cdot2^9,3\cdot631\cdot2^9,-7\cdot2^9,3\cdot5\cdot2^{12},7\cdot2^8,67\cdot2^{11}, \\ &3\cdot7\cdot13\cdot2^7,-3\cdot5^2\cdot2^8,-7\cdot2^6,-5\cdot11\cdot43\cdot2^5,-7\cdot2^5,-3\cdot5^2\cdot2^6,-1579\cdot2^3, \\ &67\cdot2^7,7\cdot2^3,3\cdot5\cdot2^6,-3\cdot23\cdot31\cdot2,-29\cdot2^4,1579,-3\cdot5^2\cdot2^2,7,0)) \end{align} $

$ \begin{align} &0=P(3,2^{60},120,(2^{59},0,-353\cdot2^{57},7\cdot2^{62},3\cdot7\cdot113\cdot2^{56},-33\cdot5\cdot2^{59},2^{56}, \\ &-97\cdot2^{60},353\cdot2^{54},0,-2^{54},5\cdot331\cdot2^53,-2^53,0,-3\cdot337\cdot2^{52},-97\cdot2^{56},2^{51}, \\ &-33\cdot5\cdot2^53,-2^{50},-3^2\cdot239\cdot2^{49},-353\cdot2^{48},0,2^{48},-53\cdot19\cdot2^{47}, \\ &-3\cdot7\cdot113\cdot2^{46},0,-353\cdot2^{45},7\cdot2^{50},-2^{45},-33\cdot5\cdot2^{47},2^{44},-97\cdot2^{48}, \\ &353\cdot2^{42},0,3\cdot7\cdot113\cdot2^{41},5\cdot331\cdot2^{41},-2^{41},0,353\cdot2^{39},-36\cdot2^{39},2^{39}, \\ &-33\cdot5\cdot2^{41},-2^{38},7\cdot2^{42},3\cdot337\cdot2^{37},0,2^{36},-53\cdot19\cdot2^{35},2^{35},0, \\ &-353\cdot2^{33},7\cdot2^{38},-2^{33},-33\cdot5\cdot2^{35},-3\cdot7\cdot113\cdot2^{31},-97\cdot2^{36},353\cdot2^{30}, \\ &0,-2^{30},-3^2\cdot5\cdot2^{33},-2^{29},0,353\cdot2^{27},-97\cdot2^{32},-3\cdot7\cdot113\cdot2^{26}, \\ &-33\cdot5\cdot2^{29},-2^{26},7\cdot2^{30},-353\cdot2^{24},0,2^{24},-53\cdot19\cdot2^{23},2^{23},0,3\cdot337\cdot2^{22}, \\ &7\cdot2^{26},-2^{21},-33\cdot5\cdot2^{23},2^{20},-36\cdot2^{19},353\cdot2^{18},0,-2^{18},5\cdot331\cdot2^{17}, \\ &3\cdot7\cdot113\cdot2^{16},0,353\cdot2^{15},-97\cdot2^{20},2^{15},-33\cdot5\cdot2^{17},-2^{14},7\cdot2^{18}, \\ &-353\cdot2^{12},0,-3\cdot7\cdot113\cdot2^{11},-53\cdot19\cdot2^{11},2^{11},0,-353\cdot2^9,-3^2\cdot239\cdot2^9, \\ &-2^9,-33\cdot5\cdot2^{11},2^8,-97\cdot2^{12},-3\cdot337\cdot2^7,0,-2^6,5\cdot331\cdot2^5,-2^5,0,353\cdot2^3, \\ &-97\cdot2^8,2^3,-33\cdot5\cdot2^5,3\cdot7\cdot113\cdot2,7\cdot2^6,-353,0,1,0)) \end{align} $

$ \begin{align} &0=P(4,2^{60},120,(-31\cdot2^{59},3\cdot269\cdot2^{60},-5\cdot61\cdot107\cdot2^{57},1553\cdot2^{60}, \\ &3^2\cdot14243\cdot2^{56},-3\cdot1051\cdot2^{60},-31\cdot2^{56},-9319\cdot2^{59},5\cdot61\cdot107\cdot2^{54}, \\ &3\cdot269\cdot2^{56},31\cdot2^{54},31\cdot3187\cdot2^53,31\cdot2^53,3\cdot269\cdot2^{54}, \\ &-3^2\cdot5\cdot1061\cdot2^{52},-9319\cdot2^{55},-31\cdot2^{51},-3\cdot1051\cdot2^{54},31\cdot2^{50}, \\ &-3\cdot38567\cdot2^{49},-5\cdot61\cdot107\cdot2^{48},3\cdot269\cdot2^{50},-31\cdot2^{48},-55\cdot41\cdot2^{47}, \\ &-3^2\cdot14243\cdot2^{46},3\cdot269\cdot2^{48},-5\cdot61\cdot107\cdot2^{45},1553\cdot2^{48},31\cdot2^{45}, \\ &-3\cdot1051\cdot2^{48},-31\cdot2^{44},-9319\cdot2^{47},5\cdot61\cdot107\cdot2^{42},3\cdot269\cdot2^{44}, \\ &3^2\cdot14243\cdot2^{41},31\cdot3187\cdot2^{41},31\cdot2^{41},3\cdot269\cdot2^{42},5\cdot61\cdot107\cdot2^{39}, \\ &-34\cdot7\cdot37\cdot2^{39},-31\cdot2^{39},-3\cdot1051\cdot2^{42},31\cdot2^{38},1553\cdot2^{40}, \\ &3^2\cdot5\cdot1061\cdot2^{37},3\cdot269\cdot2^{38},-31\cdot2^{36},-55\cdot41\cdot2^{35},-31\cdot2^{35}, \\ &3\cdot269\cdot2^{36},-5\cdot61\cdot107\cdot2^{33},1553\cdot2^{36},31\cdot2^{33},-3\cdot1051\cdot2^{36}, \\ &-3^2\cdot14243\cdot2^{31},-9319\cdot2^{35},5\cdot61\cdot107\cdot2^{30},3\cdot269\cdot2^{32},31\cdot2^{30}, \\ &-3\cdot13\cdot47\cdot2^{33},31\cdot2^{29},3\cdot269\cdot2^{30},5\cdot61\cdot107\cdot2^{27},-9319\cdot2^{31}, \\ &-3^2\cdot14243\cdot2^{26},-3\cdot1051\cdot2^{30},31\cdot2^{26},1553\cdot2^{28},-5\cdot61\cdot107\cdot2^{24}, \\ &3\cdot269\cdot2^{26},-31\cdot2^{24},-55\cdot41\cdot2^{23},-31\cdot2^{23},3\cdot269\cdot2^{24}, \\ &3^2\cdot5\cdot1061\cdot2^{22},1553\cdot2^{24},31\cdot2^{21},-3\cdot1051\cdot2^{24},-31\cdot2^{20}, \\ &-34\cdot7\cdot37\cdot2^{19},5\cdot61\cdot107\cdot2^{18},3\cdot269\cdot2^{20},31\cdot2^{18},31\cdot3187\cdot2^{17}, \\ &3^2\cdot14243\cdot2^{16},3\cdot269\cdot2^{18},5\cdot61\cdot107\cdot2^{15},-9319\cdot2^{19},-31\cdot2^{15}, \\ &-3\cdot1051\cdot2^{18},31\cdot2^{14},1553\cdot2^{16},-5\cdot61\cdot107\cdot2^{12},3\cdot269\cdot2^{14}, \\ &-3^2\cdot14243\cdot2^{11},-55\cdot41\cdot2^{11},-31\cdot2^{11},3\cdot269\cdot2^{12},-5\cdot61\cdot107\cdot2^9, \\ &-3\cdot38567\cdot2^9,31\cdot2^9,-3\cdot1051\cdot2^{12},-31\cdot2^8,-9319\cdot2^{11},-3^2\cdot5\cdot1061\cdot2^7, \\ &3\cdot269\cdot2^8,31\cdot2^6,31\cdot3187\cdot2^5,31\cdot2^5,3\cdot269\cdot2^6,5\cdot61\cdot107\cdot2^3, \\ &-9319\cdot2^7,-31\cdot2^3,-3\cdot1051\cdot2^6,3^2\cdot14243\cdot2,1553\cdot2^4,-61\cdot107\cdot5, \\ &3\cdot269\cdot2^2,-31,0)) \end{align} $

$ \begin{align}0=P(1,729,12,(0,81,-162,0,27,36,0,9,6,4,-1,0))\end{align} $

$ \begin{align}0=P(1,729,12,(243,-324,-162,-81,0,-36,-9,0,6,-1,0,0))\end{align} $