FANDOM


$ \begin{align} &P(3,2^{12},24,(3\cdot2^{11},-21\cdot2^{11},3\cdot2^{13},15\cdot2^{11},-3\cdot2^9,3\cdot2^{10},3\cdot2^8,0,-3\cdot2^{10}, \\ &-21\cdot2^7,-192,-3\cdot2^9,-96,-21\cdot2^5,-3\cdot2^7,0,24,48,-12,120,48,-42,3,0)) \\ &=7\cdot2^8\zeta(3) \end{align} $

$ \begin{align} &P(3,2^{12},24,(0,3\cdot2^{13},-27\cdot2^{12},3\cdot2^{14},0,93\cdot2^9,0,3\cdot2^{14},27\cdot2^9,3\cdot2^9,0,75\cdot2^6, \\ &0,3\cdot2^7,27\cdot2^6,3\cdot2^{10},0,93\cdot2^3,0,192,-216,24,0,3))=2^8\log^32 \end{align} $

$ \begin{align} &P(3,2^{12},24,(0,9\cdot2^{11},-135\cdot2^9,9\cdot2^{11},0,99\cdot2^8,0,27\cdot2^{10},135\cdot2^6,9\cdot2^7,0,45\cdot2^6, \\ &0,9\cdot2^5,135\cdot2^3,27\cdot2^6,0,396,0,72,-135,18,0,0))=2^5\pi^2\log2 \end{align} $

$ \begin{align} &P(3,2^{60},120,(7\cdot2^{59},-37\cdot2^{60},-63\cdot2^{58},85\cdot2^{59},3861\cdot2^{56},-3357\cdot2^{55},0, \\ &-655\cdot2^{58},347\cdot2^{54},79\cdot2^{53},0,4703\cdot2^{52},-7\cdot2^{53},0,-1687\cdot2^{52},-655\cdot2^{54}, \\ &7\cdot2^{51},-4067\cdot2^{49},0,-6695\cdot2^{48},-347\cdot2^{48},0,0,-7375\cdot2^{46},-3861\cdot2^{46}, \\ &-37\cdot2^{48},-63\cdot2^{46},85\cdot2^{47},-7\cdot2^{45},-933\cdot2^{45},0,-655\cdot2^{46},347\cdot2^{42}, \\ &-37\cdot2^{44},875\cdot2^{43},4703\cdot2^{40},-7\cdot2^{41},0,63\cdot2^{40},-3105\cdot2^{38},7\cdot2^{39}, \\ &-4067\cdot2^{37},0,85\cdot2^{39},441\cdot2^{39},0,0,-7375\cdot2^{34},7\cdot2^{35},79\cdot2^{33},-63\cdot2^{34}, \\ &85\cdot2^{35},-7\cdot2^{33},-3357\cdot2^{31},-875\cdot2^{33},-655\cdot2^{34},347\cdot2^{30},-37\cdot2^{32},0, \\ &-167\cdot2^{32},-7\cdot2^{29},0,63\cdot2^{28},-655\cdot2^{30},-3861\cdot2^{26},-4067\cdot2^{25},0,85\cdot2^{27}, \\ &-347\cdot2^{24},-375\cdot2^{23},0,-7375\cdot2^{22},7\cdot2^{23},-37\cdot2^{24},1687\cdot2^{22},85\cdot2^{23},-7\cdot2^{21}, \\ &-3357\cdot2^{19},0,-3105\cdot2^{18},347\cdot2^{18},-37\cdot2^{20},0,4703\cdot2^{16},3861\cdot2^{16},0,63\cdot2^{16}, \\ &-655\cdot2^{18},7\cdot2^{15},-923\cdot2^{15},0,85\cdot2^{15},-347\cdot2^{12},0,-875\cdot2^{13},-7375\cdot2^{10} \\ &,7\cdot2^{11},-37\cdot2^{12},-63\cdot2^{10},-6695\cdot2^8,-7\cdot2^9,-3357\cdot2^7,0,-655\cdot2^{10}, \\ &-441\cdot2^9,-37\cdot2^8,0,4703\cdot2^4,-224,-375\cdot2^3,63\cdot2^4,-655\cdot2^6,56,-8134, \\ &875\cdot2^3,85\cdot2^3,-347,0,0,0))=2^{56}\pi\log^22 \end{align} $

$ \begin{align} &P(3,2^{60},120,(5\cdot2^{59},-15\cdot2^{60},-225\cdot2^{58},95\cdot2^{59},4115\cdot2^{56},-3735\cdot2^{55},0, \\ &-685\cdot2^{58},505\cdot2^{54},5\cdot2^{53},0,5485\cdot2^{52},-5\cdot2^{53},0,-1775\cdot2^{52},-685\cdot2^{54}, \\ &5\cdot2^{51},-3945\cdot2^{49},0,-7365\cdot2^{48},-505\cdot2^{48},0,0,-8125\cdot2^{46},-4115\cdot2^{46}, \\ &-15\cdot2^{48},-225\cdot2^{46},95\cdot2^{47},-5\cdot2^{45},-965\cdot2^{45},0,-685\cdot2^{46},505\cdot2^{42}, \\ &-15\cdot2^{44},125\cdot2^{46},5485\cdot2^{40},-5\cdot2^{41},0,225\cdot2^{40},-2835\cdot2^{38},5\cdot2^{39}, \\ &-3945\cdot2^{37},0,95\cdot2^{39},905\cdot2^{38},0,0,-8125\cdot2^{34},5\cdot2^{35},5\cdot2^{33},-225\cdot2^{34}, \\ &95\cdot2^{35},-5\cdot2^{33},-3735\cdot2^{31},-125\cdot2^{36},-685\cdot2^{34},505\cdot2^{30},-15\cdot2^{32},0, \\ &-165\cdot2^{32},-5\cdot2^{29},0,225\cdot2^{28},-685\cdot2^{30},-4115\cdot2^{26},-3945\cdot2^{25},0,95\cdot2^{27}, \\ &-505\cdot2^{24},-125\cdot2^{23},0,-8125\cdot2^{22},5\cdot2^{23},-15\cdot2^{24},1775\cdot2^{22},95\cdot2^{23},-5\cdot2^{21}, \\ &-3735\cdot2^{19},0,-2835\cdot2^{18},505\cdot2^{18},-15\cdot2^{20},0,5485\cdot2^{16},4115\cdot2^{16},0,225\cdot2^{16}, \\ &-685\cdot2^{18},5\cdot2^{15},-955\cdot2^{15},0,95\cdot2^{15},-505\cdot2^{12},0,-125\cdot2^{16},-8125\cdot2^{10}, \\ &5\cdot2^{11},-15\cdot2^{12},-225\cdot2^{10},-7365\cdot2^8,-5\cdot2^9,-3735\cdot2^7,0,-685\cdot2^{10},-905\cdot2^8, \\ &-15\cdot2^8,0,5485\cdot2^4,-160,-125\cdot2^3,225\cdot2^4,-685\cdot2^6,40,-7890,125\cdot2^6, \\ &95\cdot2^3,-505,0,0,0))=2^{54}\pi^3 \end{align} $

$ \begin{align}&P(3,64,6,(16,-24,-8,-6,1,0))=\frac{280}{9}\zeta(3)-\frac{8}{9}\pi^2\log2\end{align} $

$ \begin{align} &P(3,2^{12},24,(2^{13},-5\cdot2^{14},-2^{12},17\cdot2^{13},-2^{11},5\cdot19\cdot2^9,2^{10},9\cdot2^{12},2^9,-5\cdot2^{10}, \\ &-2^8,2^6,-2^7,-5\cdot2^8,2^6,9\cdot2^8,2^5,5\cdot19\cdot2^3,-2^4,17\cdot2^5,-2^3,-5\cdot2^4,2^2,9)) \\ &=3\cdot2^8\log^32 \end{align} $

$ \begin{align} &P(3,2^{12},24,(5\cdot2^{11},-41\cdot2^{11},-5\cdot2^{10},49\cdot2^{11},-5\cdot2^9,67\cdot2^9,5\cdot2^8,27\cdot2^{10}, \\ &5\cdot2^7,-41\cdot2^7,-5\cdot2^6,-5\cdot2^7,-5\cdot2^5,-41\cdot2^5,5\cdot2^4,27\cdot2^6,5\cdot2^3, \\ &67\cdot2^3,-5\cdot2^2,49\cdot2^3,-5\cdot2^1,-41\cdot2^1,5,0))=3\cdot2^6\pi^2\log2 \end{align} $

$ \begin{align} &P(3,2^{12},24,(2^{11},-11\cdot2^{10},-2^{10},23\cdot2^9,-2^9,2^{12},2^8,27\cdot2^7,2^7,-11\cdot2^6,-2^6, \\ &-2^7,-2^5,-11\cdot2^4,2^4,27\cdot2^3,2^3,2^6,-2^2,23\cdot2^1,-2^1,-11,1,0)) \\ &=21\cdot2^5\zeta(3) \end{align} $

$ \begin{align} &P(3,2^{60},120,(2^{59},-3\cdot2^{60},11\cdot2^{57},0,23\cdot2^{56},3\cdot7\cdot2^{56},-2^{56},0,11\cdot2^{54},13\cdot2^{54}, \\ &2^{54},0,-2^{53},3\cdot2^{54},7\cdot2^{52},0,2^{51},-3\cdot7\cdot2^{50},2^{50},0,-11\cdot2^{48},3\cdot2^{50},-2^{48},0, \\ &-23\cdot2^{46},-3\cdot2^{48},11\cdot2^{45},0,-2^{45},-2^{46},-2^{44},0,11\cdot2^{42},-3\cdot2^{44},-23\cdot2^{41},0, \\ &-2^{41},3\cdot2^{42},-11\cdot2^{39},0,2^{39},-3\cdot7\cdot2^{38},2^{38},0,7\cdot2^{37},3\cdot2^{38},-2^{36},0,2^{35}, \\ &13\cdot2^{34},11\cdot2^{33},0,-2^{33},3\cdot7\cdot2^{32},23\cdot2^{31},0,11\cdot2^{30},-3\cdot2^{32},2^{30},0,-2^{29}, \\ &3\cdot2^{30},-11\cdot2^{27},0,-23\cdot2^{26},-3\cdot7\cdot2^{26},2^{26},0,-11\cdot2^{24},-13\cdot2^{24},-2^{24},0,2^{23}, \\ &-3\cdot2^{24},-7\cdot2^{22},0,-2^{21},3\cdot7\cdot2^{20},-2^{20},0,11\cdot2^{18},-3\cdot2^{20},2^{18},0,23\cdot2^{16}, \\ &3\cdot2^{18},-11\cdot2^{15},0,2^{15},2^{16},2^{14},0,-11\cdot2^{12},3\cdot2^{14},23\cdot2^{11},0,2^{11},-3\cdot2^{12}, \\ &11\cdot2^9,0,-2^9,3\cdot7\cdot2^8,-2^8,0,-7\cdot2^7,-3\cdot2^8,2^6,0,-2^5,-13\cdot2^4,-11\cdot2^3,0,2^3, \\ &-3\cdot7\cdot2^2,-23\cdot2,0,-11,3\cdot2^2,-1,0))=\frac{2^{55}}{5}\pi^3 \end{align} $

$ \begin{align} &P(3,2^{60},120,(7\cdot2^{59},-37\cdot2^{60},13\cdot17\cdot2^{57},0,192^\cdot2^{56},5\cdot71\cdot2^{56},-7\cdot2^{56},0, \\ &13\cdot17\cdot2^{54},227\cdot2^{54},7\cdot2^{54},0,-7\cdot2^{53},37\cdot2^{54},7\cdot11\cdot2^{52},0,7\cdot2^{51}, \\ &-5\cdot71\cdot2^{50},7\cdot2^{50},0,-13\cdot17\cdot2^{48},37\cdot2^{50},-7\cdot2^{48},0,-192^\cdot2^{46},-37\cdot2^{48}, \\ &13\cdot17\cdot2^{45},0,-7\cdot2^{45},-5\cdot2^{46},-7\cdot2^{44},0,13\cdot17\cdot2^{42},-37\cdot2^{44},-192^\cdot2^{41}, \\ &0,-7\cdot2^{41},37\cdot2^{42},-13\cdot17\cdot2^{39},0,7\cdot2^{39},-5\cdot71\cdot2^{38},7\cdot2^{38},0, \\ &7\cdot11\cdot2^{37},37\cdot2^{38},-7\cdot2^{36},0,7\cdot2^{35},227\cdot2^{34},13\cdot17\cdot2^{33},0,-7\cdot2^{33}, \\ &5\cdot71\cdot2^{32},192^\cdot2^{31},0,13\cdot17\cdot2^{30},-37\cdot2^{32},7\cdot2^{30},0,-7\cdot2^{29},37\cdot2^{30}, \\ &-13\cdot17\cdot2^{27},0,-192^\cdot2^{26},-5\cdot71\cdot2^{26},7\cdot2^{26},0,-13\cdot17\cdot2^{24},-227\cdot2^{24}, \\ &-7\cdot2^{24},0,7\cdot2^{23},-37\cdot2^{24},-7\cdot11\cdot2^{22},0,-7\cdot2^{21},5\cdot71\cdot2^{20},-7\cdot2^{20},0, \\ &13\cdot17\cdot2^{18},-37\cdot2^{20},7\cdot2^{18},0,192^\cdot2^{16},37\cdot2^{18},-13\cdot17\cdot2^{15},0,7\cdot2^{15}, \\ &5\cdot2^{16},7\cdot2^{14},0,-13\cdot17\cdot2^{12},37\cdot2^{14},192^\cdot2^{11},0,7\cdot2^{11},-37\cdot2^{12}, \\ &13\cdot17\cdot2^9,0,-7\cdot2^9,5\cdot71\cdot2^8,-7\cdot2^8,0,-7\cdot11\cdot2^7,-37\cdot2^8,7\cdot2^6,0,-7\cdot2^5, \\ &-227\cdot2^4,-13\cdot17\cdot2^3,0,7\cdot2^3,-5\cdot71\cdot2^2,-192^\cdot2,0,-17\cdot13,37\cdot2^2,-7,0)) \\ &=2^{57}\pi\log^22 \end{align} $

$ \begin{align} &P(3,2^{60},120,(2^{59},0,-83\cdot2^{57},11\cdot2^{59},3\cdot41\cdot2^{56},0,2^{56},-11\cdot2^{57},83\cdot2^{54},0, \\ &-2^{54},53\cdot2^{53},-2^{53},0,-3\cdot7\cdot2^{52},-11\cdot2^{53},2^{51},0,-2^{50},-34\cdot2^{49},-83\cdot2^{48},0, \\ &2^{48},-53\cdot2^{47},-3\cdot41\cdot2^{46},0,-83\cdot2^{45},11\cdot2^{47},-2^{45},0,2^{44},-11\cdot2^{45},83\cdot2^{42},0, \\ &3\cdot41\cdot2^{41},53\cdot2^{41},-2^{41},0,83\cdot2^{39},34\cdot2^{39},2^{39},0,-2^{38},11\cdot2^{39},3\cdot7\cdot2^{37},0, \\ &2^{36},-53\cdot2^{35},2^{35},0,-83\cdot2^{33},11\cdot2^{35},-2^{33},0,-3\cdot41\cdot2^{31},-11\cdot2^{33},83\cdot2^{30},0, \\ &-2^{30},0,-2^{29},0,83\cdot2^{27},-11\cdot2^{29},-3\cdot41\cdot2^{26},0,-2^{26},11\cdot2^{27},-83\cdot2^{24},0,2^{24}, \\ &-53\cdot2^{23},2^{23},0,3\cdot7\cdot2^{22},11\cdot2^{23},-2^{21},0,2^{20},34\cdot2^{19},83\cdot2^{18},0,-2^{18}, \\ &53\cdot2^{17},3\cdot41\cdot2^{16},0,83\cdot2^{15},-11\cdot2^{17},2^{15},0,-2^{14},11\cdot2^{15},-83\cdot2^{12},0, \\ &-3\cdot41\cdot2^{11},-53\cdot2^{11},2^{11},0,-83\cdot2^9,-34\cdot2^9,-2^9,0,2^8,-11\cdot2^9, \\ &-3\cdot7\cdot2^7,0,-2^6,53\cdot2^5,-2^5,0,83\cdot2^3,-11\cdot2^5,2^3,0,3\cdot41\cdot2,11\cdot2^3,-83,0,1,0)) \\ &=7\cdot2^{55}\zeta(3) \end{align} $

$ \begin{align} &P(3,2^{60},120,(7\cdot2^{59},0,-1031\cdot2^{57},19\cdot2^{62},32^\cdot179\cdot2^{56},0,7\cdot2^{56},-19\cdot2^{60}, \\ &1031\cdot2^{54},0,-7\cdot2^{54},53\cdot13\cdot2^{53},-7\cdot2^{53},0,-33\cdot11\cdot2^{52},-19\cdot2^{56}, \\ &7\cdot2^{51},0,-7\cdot2^{50},-32^\cdot113\cdot2^{49},-1031\cdot2^{48},0,7\cdot2^{48},-53\cdot13\cdot2^{47}, \\ &-32^\cdot179\cdot2^{46},0,-1031\cdot2^{45},19\cdot2^{50},-7\cdot2^{45},0,7\cdot2^{44},-19\cdot2^{48},1031\cdot2^{42}, \\ &0,32^\cdot179\cdot2^{41},53\cdot13\cdot2^{41},-7\cdot2^{41},0,1031\cdot2^{39},32^\cdot113\cdot2^{39},7\cdot2^{39},0, \\ &-7\cdot2^{38},19\cdot2^{42},33\cdot11\cdot2^{37},0,7\cdot2^{36},-53\cdot13\cdot2^{35},7\cdot2^{35},0,-1031\cdot2^{33}, \\ &19\cdot2^{38},-7\cdot2^{33},0,-32^\cdot179\cdot2^{31},-19\cdot2^{36},1031\cdot2^{30},0,-7\cdot2^{30},0,-7\cdot2^{29},0, \\ &1031\cdot2^{27},-19\cdot2^{32},-32^\cdot179\cdot2^{26},0,-7\cdot2^{26},19\cdot2^{30},-1031\cdot2^{24},0,7\cdot2^{24}, \\ &-53\cdot13\cdot2^{23},7\cdot2^{23},0,33\cdot11\cdot2^{22},19\cdot2^{26},-7\cdot2^{21},0,7\cdot2^{20}, \\ &32^\cdot113\cdot2^{19},1031\cdot2^{18},0,-7\cdot2^{18},53\cdot13\cdot2^{17},32^\cdot179\cdot2^{16},0,1031\cdot2^{15}, \\ &-19\cdot2^{20},7\cdot2^{15},0,-7\cdot2^{14},19\cdot2^{18},-1031\cdot2^{12},0,-32^\cdot179\cdot2^{11},-53\cdot13\cdot2^{11}, \\ &7\cdot2^{11},0,-1031\cdot2^9,-32^\cdot113\cdot2^9,-7\cdot2^9,0,7\cdot2^8,-19\cdot2^{12},-33\cdot11\cdot2^7,0,-7\cdot2^6, \\ &53\cdot13\cdot2^5,-7\cdot2^5,0,1031\cdot2^3,-19\cdot2^8,7\cdot2^3,0,32^\cdot179\cdot2,19\cdot2^6,-1031,0,7,0)) \\ &=\frac{5\cdot2^{56}}{3}\pi^2\log2 \end{align} $

$ \begin{align} &P(3,2^{60},120,(2^{59},0,-11\cdot19\cdot2^{57},5\cdot2^{62},373\cdot2^{56},0,2^{56},-5\cdot2^{60}, \\ &11\cdot19\cdot2^{54},0,-2^{54},367\cdot2^{53},-2^{53},0,-83\cdot2^{52},-5\cdot2^{56},2^{51},0,-2^{50}, \\ &-5\cdot43\cdot2^{49},-11\cdot19\cdot2^{48},0,2^{48},-367\cdot2^{47},-373\cdot2^{46},0,-11\cdot19\cdot2^{45}, \\ &5\cdot2^{50},-2^{45},0,2^{44},-5\cdot2^{48},11\cdot19\cdot2^{42},0,373\cdot2^{41},367\cdot2^{41},-2^{41},0, \\ &11\cdot19\cdot2^{39},5\cdot43\cdot2^{39},2^{39},0,-2^{38},5\cdot2^{42},83\cdot2^{37},0,2^{36},-367\cdot2^{35}, \\ &2^{35},0,-11\cdot19\cdot2^{33},5\cdot2^{38},-2^{33},0,-373\cdot2^{31},-5\cdot2^{36},11\cdot19\cdot2^{30},0, \\ &-2^{30},-2^{32},-2^{29},0,11\cdot19\cdot2^{27},-5\cdot2^{32},-373\cdot2^{26},0,-2^{26},5\cdot2^{30}, \\ &-11\cdot19\cdot2^{24},0,2^{24},-367\cdot2^{23},2^{23},0,83\cdot2^{22},5\cdot2^{26},-2^{21},0,2^{20}, \\ &5\cdot43\cdot2^{19},11\cdot19\cdot2^{18},0,-2^{18},367\cdot2^{17},373\cdot2^{16},0,11\cdot19\cdot2^{15}, \\ &-5\cdot2^{20},2^{15},0,-2^{14},5\cdot2^{18},-11\cdot19\cdot2^{12},0,-373\cdot2^{11},-367\cdot2^{11},2^{11},0, \\ &-11\cdot19\cdot2^9,-5\cdot43\cdot2^9,-2^9,0,2^8,-5\cdot2^{12},-83\cdot2^7,0,-2^6,367\cdot2^5,-2^5,0, \\ &11\cdot19\cdot2^3,-5\cdot2^8,2^3,0,373\cdot2,5\cdot2^6,-19\cdot11,0,1,2^2))=\frac{2^{58}}{3}\log^33 \end{align} $

$ \begin{align} &P(3,16,8,(8,0,-4,-4,-2,0,1,1))=\frac{1}{3}\log^32-\frac{5}{12}\pi^2\log2+\frac{35}{4}\zeta(3) \end{align} $

$ \begin{align} &P(4,2^{12},24,(27\cdot2^{11},-513\cdot2^{11},135\cdot2^{14},-27\cdot2^{11},-27\cdot2^9,-621\cdot2^{10},27\cdot2^8, \\ &-729\cdot2^{10},-135\cdot2^{11},-513\cdot2^7,-27\cdot2^6,-189\cdot2^9,-27\cdot2^5,-513\cdot2^5,-135\cdot2^8, \\ &-729\cdot2^6,216,-621\cdot2^4,-108,-216,135\cdot2^5,-1026,27,0))=164\pi^4 \end{align} $

$ \begin{align} &P(4,2^{12},24,(73\cdot2^{12},-2617\cdot2^{12},8455\cdot2^{12},-2533\cdot2^{12},-73\cdot2^{10},-25781\cdot2^9, \\ &73\cdot2^9,-6891\cdot2^{11},-8455\cdot2^9,-2617\cdot2^8,-73\cdot2^7,-23551\cdot2^6,-73\cdot2^6,-2617\cdot2^6, \\ &-8455\cdot2^6,-6891\cdot2^7,73\cdot2^4,-25781\cdot2^3,-73\cdot2^3, \\ &-2533\cdot2^4,8455\cdot2^3,-10468,146,-615))=205\cdot2^5\log^42 \end{align} $

$ \begin{align} &P(4,2^{12},24,(121\cdot2^{11},-3775\cdot2^{11},10375\cdot2^{11},-1597\cdot2^{11},-121\cdot2^9,-3421\cdot2^{11}, \\ &121\cdot2^8,-7695\cdot2^{10},-10375\cdot2^8,-3775\cdot2^7,-121\cdot2^6,-3539\cdot2^8,-121\cdot2^5, \\ &-3775\cdot2^5,-10375\cdot2^5,-7695\cdot2^6,121\cdot2^3,-3421\cdot2^5,-484,-1597\cdot2^3, \\ &41500,-7550,121,0))=41\cdot2^5\pi^2\log^22 \end{align} $

$ \begin{align} &P(4,2^{60},120,(259,-5\cdot2^{61},11\cdot17\cdot2^{57},-2^{61},-127\cdot2^{56},-5\cdot2^{59},2^{56},-2^{61}, \\ &-11\cdot17\cdot2^{54},-5\cdot2^{57},-2^{54},-5\cdot41\cdot2^{53},-2^{53},-5\cdot2^{55},-31\cdot2^{52},-2^{57}, \\ &2^{51},-5\cdot2^{53},-2^{50},109\cdot2^{49},11\cdot17\cdot2^{48},-5\cdot2^{51},2^{48},53\cdot2^{47},127\cdot2^{46}, \\ &-5\cdot2^{49},11\cdot17\cdot2^{45},-2^{49},-2^{45},-5\cdot2^{47},2^{44},-2^{49},-11\cdot17\cdot2^{42},-5\cdot2^{45}, \\ &-127\cdot2^{41},-5\cdot41\cdot2^{41},-2^{41},-5\cdot2^{43},-11\cdot17\cdot2^{39},-33\cdot7\cdot2^{39},2^{39}, \\ &-5\cdot2^{41},-2^{38},-2^{41},31\cdot2^{37},-5\cdot2^{39},2^{36},53\cdot2^{35},2^{35},-5\cdot2^{37},11\cdot17\cdot2^{33}, \\ &-2^{37},-2^{33},-5\cdot2^{35},127\cdot2^{31},-2^{37},-11\cdot17\cdot2^{30},-5\cdot2^{33},-2^{30},-5\cdot2^{33},-2^{29}, \\ &-5\cdot2^{31},-11\cdot17\cdot2^{27},-2^{33},127\cdot2^{26},-5\cdot2^{29},-2^{26},-2^{29},11\cdot17\cdot2^{24},-5\cdot2^{27}, \\ &2^{24},53\cdot2^{23},2^{23},-5\cdot2^{25},31\cdot2^{22},-2^{25},-2^{21},-5\cdot2^{23},2^{20},-33\cdot7\cdot2^{19}, \\ &-11\cdot17\cdot2^{18},-5\cdot2^{21},-2^{18},-5\cdot41\cdot2^{17},-127\cdot2^{16},-5\cdot2^{19},-11\cdot17\cdot2^{15}, \\ &-2^{21},2^{15},-5\cdot2^{17},-2^{14},-2^{17},11\cdot17\cdot2^{12},-5\cdot2^{15},127\cdot2^{11},53\cdot2^{11},2^{11}, \\ &-5\cdot2^{13},11\cdot17\cdot2^9,109\cdot2^9,-2^9,-5\cdot2^{11},2^8,-2^{13},-31\cdot2^7,-5\cdot2^9,-2^6, \\ &-5\cdot41\cdot2^5,-2^5,-5\cdot2^7,-11\cdot17\cdot2^3,-2^9,2^3,-5\cdot2^5,-127\cdot2,-2^5,17\cdot11, \\ &-5\cdot2^3,1,0))=\frac{7\cdot71\cdot2^{51}}{675}\pi^4 \end{align} $

$ \begin{align} &P(4,2^{60},120,(823\cdot2^{59},-5\cdot3137\cdot2^{60},11\cdot40829\cdot2^{57},-18047\cdot2^{60}, \\ &-277\cdot1723\cdot2^{56},-5\cdot3137\cdot2^{58},823\cdot2^{56},1181\cdot2^{59},-11\cdot40829\cdot2^{54}, \\ &-5\cdot3137\cdot2^{56},-823\cdot2^{54},-595141\cdot2^{53},-823\cdot2^{53},-5\cdot3137\cdot2^{54}, \\ &29\cdot457\cdot2^{52},1181\cdot2^{55},823\cdot2^{51},-5\cdot3137\cdot2^{52},-823\cdot2^{50},331249\cdot2^{49}, \\ &11\cdot40829\cdot2^{48},-5\cdot3137\cdot2^{50},823\cdot2^{48},192^\cdot1301\cdot2^{47},277\cdot1723\cdot2^{46}, \\ &-5\cdot3137\cdot2^{48},11\cdot40829\cdot2^{45},-18047\cdot2^{48},-823\cdot2^{45},-5\cdot3137\cdot2^{46}, \\ &823\cdot2^{44},1181\cdot2^{47},-11\cdot40829\cdot2^{42},-5\cdot3137\cdot2^{44},-277\cdot1723\cdot2^{41}, \\ &-595141\cdot2^{41},-823\cdot2^{41},-5\cdot3137\cdot2^{42},-11\cdot40829\cdot2^{39},-3\cdot72^\cdot13\cdot239\cdot2^{39}, \\ &823\cdot2^{39},-5\cdot3137\cdot2^{40},-823\cdot2^{38},-18047\cdot2^{40},-29\cdot457\cdot2^{37},-5\cdot3137\cdot2^{38}, \\ &823\cdot2^{36},192^\cdot1301\cdot2^{35},823\cdot2^{35},-5\cdot3137\cdot2^{36},11\cdot40829\cdot2^{33},-18047\cdot2^{36}, \\ &-823\cdot2^{33},-5\cdot3137\cdot2^{34},277\cdot1723\cdot2^{31},1181\cdot2^{35},-11\cdot40829\cdot2^{30}, \\ &-5\cdot3137\cdot2^{32},-823\cdot2^{30},-29879\cdot2^{31},-823\cdot2^{29},-5\cdot3137\cdot2^{30},-11\cdot40829\cdot2^{27}, \\ &1181\cdot2^{31},277\cdot1723\cdot2^{26},-5\cdot3137\cdot2^{28},-823\cdot2^{26},-18047\cdot2^{28},11\cdot40829\cdot2^{24}, \\ &-5\cdot3137\cdot2^{26},823\cdot2^{24},192^\cdot1301\cdot2^{23},823\cdot2^{23},-5\cdot3137\cdot2^{24}, \\ &-29\cdot457\cdot2^{22},-18047\cdot2^{24},-823\cdot2^{21},-5\cdot3137\cdot2^{22},823\cdot2^{20}, \\ &-3\cdot72^\cdot13\cdot239\cdot2^{19},-11\cdot40829\cdot2^{18},-5\cdot3137\cdot2^{20},-823\cdot2^{18}, \\ &-595141\cdot2^{17},-277\cdot1723\cdot2^{16},-5\cdot3137\cdot2^{18},-11\cdot40829\cdot2^{15},1181\cdot2^{19}, \\ &823\cdot2^{15},-5\cdot3137\cdot2^{16},-823\cdot2^{14},-18047\cdot2^{16},11\cdot40829\cdot2^{12},-5\cdot3137\cdot2^{14} \\ &,277\cdot1723\cdot2^{11},192^\cdot1301\cdot2^{11},823\cdot2^{11},-5\cdot3137\cdot2^{12},11\cdot40829\cdot2^9, \\ &331249\cdot2^9,-823\cdot2^9,-5\cdot3137\cdot2^{10},823\cdot2^8,1181\cdot2^{11},29\cdot457\cdot2^7,-5\cdot3137\cdot2^8, \\ &-823\cdot2^6,-595141\cdot2^5,-823\cdot2^5,-5\cdot3137\cdot2^6,-11\cdot40829\cdot2^3,1181\cdot2^7,823\cdot2^3, \\ &-5\cdot3137\cdot2^4,-277\cdot1723\cdot2,-18047\cdot2^4,40829\cdot11,-5\cdot3137\cdot2^2,823, \\ &-3\cdot7\cdot71\cdot2))=7\cdot71\cdot2^{51}\log^42 \end{align} $

$ \begin{align} &P(4,2^{60},120,(13^2\cdot19\cdot2^{59},-37\cdot179\cdot2^{63},5\cdot13\cdot19973\cdot2^{57},-5\cdot1663\cdot2^{62}, \\ &-17\cdot179\cdot379\cdot2^{56},-37\cdot179\cdot2^{61},13^2\cdot19\cdot2^{56},-4931\cdot2^{60}, \\ &-5\cdot13\cdot19973\cdot2^{54},-37\cdot179\cdot2^{59},-13^2\cdot19\cdot2^{54},-43\cdot36529\cdot2^{53}, \\ &-13^2\cdot19\cdot2^{53},-37\cdot179\cdot2^{57},-5\cdot15137\cdot2^{52},-4931\cdot2^{56},13^2\cdot19\cdot2^{51}, \\ &-37\cdot179\cdot2^{55},-13^2\cdot19\cdot2^{50},5\cdot176159\cdot2^{49},5\cdot13\cdot19973\cdot2^{48}, \\ &-37\cdot179\cdot2^{53},13^2\cdot19\cdot2^{48},55\cdot367\cdot2^{47},17\cdot179\cdot379\cdot2^{46}, \\ &-37\cdot179\cdot2^{51},5\cdot13\cdot19973\cdot2^{45},-5\cdot1663\cdot2^{50},-13^2\cdot19\cdot2^{45}, \\ &-37\cdot179\cdot2^{49},13^2\cdot19\cdot2^{44},-4931\cdot2^{48},-5\cdot13\cdot19973\cdot2^{42},-37\cdot179\cdot2^{47}, \\ &-17\cdot179\cdot379\cdot2^{41},-43\cdot36529\cdot2^{41},-13^2\cdot19\cdot2^{41},-37\cdot179\cdot2^{45}, \\ &-5\cdot13\cdot19973\cdot2^{39},-35\cdot7\cdot13\cdot59\cdot2^{39},13^2\cdot19\cdot2^{39},-37\cdot179\cdot2^{43}, \\ &-13^2\cdot19\cdot2^{38},-5\cdot1663\cdot2^{42},5\cdot15137\cdot2^{37},-37\cdot179\cdot2^{41},13^2\cdot19\cdot2^{36}, \\ &55\cdot367\cdot2^{35},13^2\cdot19\cdot2^{35},-37\cdot179\cdot2^{39},5\cdot13\cdot19973\cdot2^{33},-5\cdot1663\cdot2^{38}, \\ &-13^2\cdot19\cdot2^{33},-37\cdot179\cdot2^{37},17\cdot179\cdot379\cdot2^{31},-4931\cdot2^{36},-5\cdot13\cdot19973\cdot2^{30}, \\ &-37\cdot179\cdot2^{35},-13^2\cdot19\cdot2^{30},-37\cdot179\cdot2^{35},-13^2\cdot19\cdot2^{29},-37\cdot179\cdot2^{33}, \\ &-5\cdot13\cdot19973\cdot2^{27},-4931\cdot2^{32},17\cdot179\cdot379\cdot2^{26},-37\cdot179\cdot2^{31},-13^2\cdot19\cdot2^{26}, \\ &-5\cdot1663\cdot2^{30},5\cdot13\cdot19973\cdot2^{24},-37\cdot179\cdot2^{29},13^2\cdot19\cdot2^{24},55\cdot367\cdot2^{23}, \\ &13^2\cdot19\cdot2^{23},-37\cdot179\cdot2^{27},5\cdot15137\cdot2^{22},-5\cdot1663\cdot2^{26},-13^2\cdot19\cdot2^{21}, \\ &-37\cdot179\cdot2^{25},13^2\cdot19\cdot2^{20},-35\cdot7\cdot13\cdot59\cdot2^{19},-5\cdot13\cdot19973\cdot2^{18}, \\ &-37\cdot179\cdot2^{23},-13^2\cdot19\cdot2^{18},-43\cdot36529\cdot2^{17},-17\cdot179\cdot379\cdot2^{16},-37\cdot179\cdot2^{21}, \\ &-5\cdot13\cdot19973\cdot2^{15},-4931\cdot2^{20},13^2\cdot19\cdot2^{15},-37\cdot179\cdot2^{19},-13^2\cdot19\cdot2^{14}, \\ &-5\cdot1663\cdot2^{18},5\cdot13\cdot19973\cdot2^{12},-37\cdot179\cdot2^{17},17\cdot179\cdot379\cdot2^{11},55\cdot367\cdot2^{11}, \\ &13^2\cdot19\cdot2^{11},-37\cdot179\cdot2^{15},5\cdot13\cdot19973\cdot2^9,5\cdot176159\cdot2^9,-13^2\cdot19\cdot2^9, \\ &-37\cdot179\cdot2^{13},13^2\cdot19\cdot2^8,-4931\cdot2^{12},-5\cdot15137\cdot2^7,-37\cdot179\cdot2^{11}, \\ &-13^2\cdot19\cdot2^6,-43\cdot36529\cdot2^5,-13^2\cdot19\cdot2^5,-37\cdot179\cdot2^9,-5\cdot13\cdot19973\cdot2^3, \\ &-4931\cdot2^8,13^2\cdot19\cdot2^3,-37\cdot179\cdot2^7,-17\cdot179\cdot379\cdot2,-5\cdot1663\cdot2^6, \\ &13\cdot19973\cdot5,-37\cdot179\cdot2^5,19\cdot13^2,0))=7\cdot71\cdot2^{54}\pi^2\log^22 \end{align} $

$ \begin{align} &P(4,2^{12},24,(2^11,-2^{12},-7\cdot2^9,0,-2^9,-5\cdot2^8,-2^8,0,-7\cdot2^6,-2^8,2^6,0,-2^5,2^6, \\ &7\cdot2^3,0,2^3,5\cdot2^2,2^2,0,7,2^2,-1,0))=\frac{5\cdot2^12}{9}\text{Cl}_4\left(\frac{\pi}{2}\right)+\frac{32}{3}\pi\log^32-24\pi^3\log2 \end{align} $

$ \begin{align} &P(4,2^{60},120,(260,23\cdot2^{60},-239\cdot2^{57},0,-3\cdot211\cdot2^{55},-5\cdot67\cdot2^{56},-2^{57},0, \\ &-239\cdot2^{54},-32^\cdot72^\cdot2^{53},2^{55},0,-2^{54},-23\cdot2^{54},-3\cdot72^\cdot2^{50},0,2^{52}, \\ &5\cdot67\cdot2^{50},2^{51},0,239\cdot2^{48},-23\cdot2^{50},-2^{49},0,3\cdot211\cdot2^{45},23\cdot2^{48}, \\ &-239\cdot2^{45},0,-2^{46},-32^\cdot5\cdot2^{43},-2^{45},0,-239\cdot2^{42},23\cdot2^{44},3\cdot211\cdot2^{40},0, \\ &-2^{42},-23\cdot2^{42},239\cdot2^{39},0,2^{40},5\cdot67\cdot2^{38},2^{39},0,-3\cdot72^\cdot2^{35},-23\cdot2^{38}, \\ &-2^{37},0,2^{36},-32^\cdot72^\cdot2^{33},-239\cdot2^{33},0,-2^{34},-5\cdot67\cdot2^{32},-3\cdot211\cdot2^{30},0, \\ &-239\cdot2^{30},23\cdot2^{32},2^{31},0,-2^{30},-23\cdot2^{30},239\cdot2^{27},0,3\cdot211\cdot2^{25},5\cdot67\cdot2^{26}, \\ &2^{27},0,239\cdot2^{24},32^\cdot72^\cdot2^{23},-2^{25},0,2^{24},23\cdot2^{24},3\cdot72^\cdot2^{20},0,-2^{22}, \\ &-5\cdot67\cdot2^{20},-2^{21},0,-239\cdot2^{18},23\cdot2^{20},2^{19},0,-3\cdot211\cdot2^{15},-23\cdot2^{18},239\cdot2^{15}, \\ &0,2^{16},32^\cdot5\cdot2^{13},2^{15},0,239\cdot2^{12},-23\cdot2^{14},-3\cdot211\cdot2^{10},0,2^{12},23\cdot2^{12}, \\ &-239\cdot2^9,0,-2^{10},-5\cdot67\cdot2^8,-2^9,0,3\cdot72^\cdot2^5,23\cdot2^8,2^7,0,-2^6,32^\cdot72^\cdot2^3,239\cdot2^3, \\ &0,2^4,5\cdot67\cdot2^2,211\cdot3,0,239,-23\cdot2^2,-2,0))=3\cdot2^{60}\text{Cl}_4\left(\frac{\pi}{2}\right)+\frac{29\cdot2^{52}}{3}\pi\log^32-47\cdot2^{50}\pi^3\log2 \end{align} $

$ \begin{align} &P(5,2^{60},120,(279\cdot2^{59},-7263\cdot2^{60},293715\cdot2^{57},-13977\cdot2^{60}, \\ &-1153683\cdot2^{56},28377\cdot2^{60},279\cdot2^{56},83871\cdot2^{59},-293715\cdot2^{54}, \\ &-7263\cdot2^{56},-279\cdot2^{54},-889173\cdot2^{53},-279\cdot2^{53},-7263\cdot2^{54}, \\ &429705\cdot2^{52},83871\cdot2^{55},279\cdot2^{51},28377\cdot2^{54},-279\cdot2^{50}, \\ &1041309\cdot2^{49},293715\cdot2^{48},-7263\cdot2^{50},279\cdot2^{48},1153125\cdot2^{47}, \\ &1153683\cdot2^{46},-7263\cdot2^{48},293715\cdot2^{45},-13977\cdot2^{48},-279\cdot2^{45}, \\ &28377\cdot2^{48},279\cdot2^{44},83871\cdot2^{47},-293715\cdot2^{42},-7263\cdot2^{44},-1153683\cdot2^{41}, \\ &-889173\cdot2^{41},-279\cdot2^{41},-7263\cdot2^{42},-293715\cdot2^{39},188811\cdot2^{39},279\cdot2^{39}, \\ &28377\cdot2^{42},-279\cdot2^{38},-13977\cdot2^{40},-429705\cdot2^{37},-7263\cdot2^{38},279\cdot2^{36}, \\ &1153125\cdot2^{35},279\cdot2^{35},-7263\cdot2^{36},293715\cdot2^{33},-13977\cdot2^{36},-279\cdot2^{33}, \\ &28377\cdot2^{36},1153683\cdot2^{31},83871\cdot2^{35},-293715\cdot2^{30},-7263\cdot2^{32},-279\cdot2^{30}, \\ &16497\cdot2^{33},-279\cdot2^{29},-7263\cdot2^{30},-293715\cdot2^{27},83871\cdot2^{31},1153683\cdot2^{26}, \\ &28377\cdot2^{30},-279\cdot2^{26},-13977\cdot2^{28},293715\cdot2^{24},-7263\cdot2^{26},279\cdot2^{24}, \\ &1153125\cdot2^{23},279\cdot2^{23},-7263\cdot2^{24},-429705\cdot2^{22},-13977\cdot2^{24},-279\cdot2^{21}, \\ &28377\cdot2^{24},279\cdot2^{20},188811\cdot2^{19},-293715\cdot2^{18},-7263\cdot2^{20},-279\cdot2^{18}, \\ &-889173\cdot2^{17},-1153683\cdot2^{16},-7263\cdot2^{18},-293715\cdot2^{15},83871\cdot2^{19},279\cdot2^{15}, \\ &28377\cdot2^{18},-279\cdot2^{14},-13977\cdot2^{16},293715\cdot2^{12},-7263\cdot2^{14},1153683\cdot2^{11}, \\ &1153125\cdot2^{11},279\cdot2^{11},-7263\cdot2^{12},293715\cdot2^9,1041309\cdot2^9,-279\cdot2^9,28377\cdot2^{12}, \\ &279\cdot2^8,83871\cdot2^{11},429705\cdot2^7,-7263\cdot2^8,-279\cdot2^6,-889173\cdot2^5,-279\cdot2^5, \\ &-7263\cdot2^6,-293715\cdot2^3,83871\cdot2^7,279\cdot2^3,28377\cdot2^6,-2307366, \\ &-13977\cdot2^4,293715,-29052,279,0))=62651\cdot2^49\zeta(5) \end{align} $

$ \begin{align} &P(5,2^{60},120,(2783\cdot2^{59},-32699\cdot2^{62},7171925\cdot2^{57},-187547\cdot2^{61}, \\ &-41252441\cdot2^{56},9391097\cdot2^{57},2783\cdot2^{56},52183\cdot2^65,-7171925\cdot2^{54}, \\ &-32699\cdot2^{58},-2783\cdot2^{54},-29483621\cdot2^{53},-2783\cdot2^{53},-32699\cdot2^{56}, \\ &17037475\cdot2^{52},52183\cdot2^{61},2783\cdot2^{51},9391097\cdot2^{51},-2783\cdot2^{50}, \\ &38246123\cdot2^{49},7171925\cdot2^{48},-32699\cdot2^{52},2783\cdot2^{48},41307505\cdot2^{47}, \\ &41252441\cdot2^{46},-32699\cdot2^{50},7171925\cdot2^{45},-187547\cdot2^{49},-2783\cdot2^{45}, \\ &9391097\cdot2^{45},2783\cdot2^{44},52183\cdot2^{53},-7171925\cdot2^{42},-32699\cdot2^{46}, \\ &-41252441\cdot2^{41},-29483621\cdot2^{41},-2783\cdot2^{41},-32699\cdot2^{44},-7171925\cdot2^{39}, \\ &12188517\cdot2^{39},2783\cdot2^{39},9391097\cdot2^{39},-2783\cdot2^{38},-187547\cdot2^{41}, \\ &-17037475\cdot2^{37},-32699\cdot2^{40},2783\cdot2^{36},41307505\cdot2^{35},2783\cdot2^{35}, \\ &-32699\cdot2^{38},7171925\cdot2^{33},-187547\cdot2^{37},-2783\cdot2^{33},9391097\cdot2^{33}, \\ &41252441\cdot2^{31},52183\cdot2^{41},-7171925\cdot2^{30},-32699\cdot2^{34},-2783\cdot2^{30}, \\ &5881627\cdot2^{30},-2783\cdot2^{29},-32699\cdot2^{32},-7171925\cdot2^{27},52183\cdot2^{37}, \\ &41252441\cdot2^{26},9391097\cdot2^{27},-2783\cdot2^{26},-187547\cdot2^{29},7171925\cdot2^{24}, \\ &-32699\cdot2^{28},2783\cdot2^{24},41307505\cdot2^{23},2783\cdot2^{23},-32699\cdot2^{26}, \\ &-17037475\cdot2^{22},-187547\cdot2^{25},-2783\cdot2^{21},9391097\cdot2^{21},2783\cdot2^{20}, \\ &12188517\cdot2^{19},-7171925\cdot2^{18},-32699\cdot2^{22},-2783\cdot2^{18},-29483621\cdot2^{17}, \\ &-41252441\cdot2^{16},-32699\cdot2^{20},-7171925\cdot2^{15},52183\cdot2^{25},2783\cdot2^{15}, \\ &9391097\cdot2^{15},-2783\cdot2^{14},-187547\cdot2^{17},7171925\cdot2^{12},-32699\cdot2^{16}, \\ &41252441\cdot2^{11},41307505\cdot2^{11},2783\cdot2^{11},-32699\cdot2^{14},7171925\cdot2^9, \\ &38246123\cdot2^9,-2783\cdot2^9,9391097\cdot2^9,2783\cdot2^8,52183\cdot2^{17},17037475\cdot2^7, \\ &-32699\cdot2^{10},-2783\cdot2^6,-29483621\cdot2^5,-2783\cdot2^5,-32699\cdot2^8,-7171925\cdot2^3, \\ &52183\cdot2^{13},2783\cdot2^3,9391097\cdot2^3,-82504882,-187547\cdot2^5,7171925, \\ &-32699\cdot2^4,2783,30315))=2021\cdot2^{52}\log^52 \end{align} $

$ \begin{align} &P(5,2^{60},120,(21345\cdot2^{59},-464511\cdot2^{61},47870835\cdot2^{57},-1312971\cdot2^{61}, \\ &-236170815\cdot2^{56},1579179\cdot2^{62},21345\cdot2^{56},286131\cdot2^65,-47870835\cdot2^{54}, \\ &-464511\cdot2^{57},-21345\cdot2^{54},-173704605\cdot2^{53},-21345\cdot2^{53},-464511\cdot2^{55}, \\ &94128645\cdot2^{52},286131\cdot2^{61},21345\cdot2^{51},1579179\cdot2^{56},-21345\cdot2^{50}, \\ &215120589\cdot2^{49},47870835\cdot2^{48},-464511\cdot2^{51},21345\cdot2^{48},236128125\cdot2^{47}, \\ &236170815\cdot2^{46},-464511\cdot2^{49},47870835\cdot2^{45},-1312971\cdot2^{49},-21345\cdot2^{45}, \\ &1579179\cdot2^{50},21345\cdot2^{44},286131\cdot2^{53},-47870835\cdot2^{42},-464511\cdot2^{45}, \\ &-236170815\cdot2^{41},-173704605\cdot2^{41},-21345\cdot2^{41},-464511\cdot2^{43},-47870835\cdot2^{39}, \\ &56870019\cdot2^{39},21345\cdot2^{39},1579179\cdot2^{44},-21345\cdot2^{38},-1312971\cdot2^{41}, \\ &-94128645\cdot2^{37},-464511\cdot2^{39},21345\cdot2^{36},236128125\cdot2^{35},21345\cdot2^{35}, \\ &-464511\cdot2^{37},47870835\cdot2^{33},-1312971\cdot2^{37},-21345\cdot2^{33},1579179\cdot2^{38}, \\ &236170815\cdot2^{31},286131\cdot2^{41},-47870835\cdot2^{30},-464511\cdot2^{33},-21345\cdot2^{30}, \\ &1950735\cdot2^{34},-21345\cdot2^{29},-464511\cdot2^{31},-47870835\cdot2^{27},286131\cdot2^{37}, \\ &236170815\cdot2^{26},1579179\cdot2^{32},-21345\cdot2^{26},-1312971\cdot2^{29},47870835\cdot2^{24}, \\ &-464511\cdot2^{27},21345\cdot2^{24},236128125\cdot2^{23},21345\cdot2^{23},-464511\cdot2^{25}, \\ &-94128645\cdot2^{22},-1312971\cdot2^{25},-21345\cdot2^{21},1579179\cdot2^{26},21345\cdot2^{20}, \\ &56870019\cdot2^{19},-47870835\cdot2^{18},-464511\cdot2^{21},-21345\cdot2^{18},-173704605\cdot2^{17}, \\ &-236170815\cdot2^{16},-464511\cdot2^{19},-47870835\cdot2^{15},286131\cdot2^{25},21345\cdot2^{15}, \\ &1579179\cdot2^{20},-21345\cdot2^{14},-1312971\cdot2^{17},47870835\cdot2^{12},-464511\cdot2^{15}, \\ &236170815\cdot2^{11},236128125\cdot2^{11},21345\cdot2^{11},-464511\cdot2^{13},47870835\cdot2^9, \\ &215120589\cdot2^9,-21345\cdot2^9,1579179\cdot2^{14},21345\cdot2^8,286131\cdot2^{17},94128645\cdot2^7, \\ &-464511\cdot2^9,-21345\cdot2^6,-173704605\cdot2^5,-21345\cdot2^5,-464511\cdot2^7, \\ &-47870835\cdot2^3,286131\cdot2^{13},21345\cdot2^3,1579179\cdot2^8,-472341630, \\ &-1312971\cdot2^5,47870835,-464511\cdot2^3,21345,0))=2021\cdot2^{53}\pi^2\log^32 \end{align} $

$ \begin{align} &P(5,2^{60},120,(5157\cdot2^{59},-89127\cdot2^{61},7805295\cdot2^{57},-195183\cdot2^{61}, \\ &-32325939\cdot2^{56},1621107\cdot2^{59},5157\cdot2^{56},37287\cdot2^{65},-7805295\cdot2^{54}, \\ &-89127\cdot2^{57},-5157\cdot2^{54},-24620409\cdot2^{53},-5157\cdot2^{53},-89127\cdot2^{55}, \\ &12255165\cdot2^{52},37287\cdot2^{61},5157\cdot2^{51},1621107\cdot2^{53},-5157\cdot2^{50}, \\ &29192697\cdot2^{49},7805295\cdot2^{48},-89127\cdot2^{51},5157\cdot2^{48},32315625\cdot2^{47}, \\ &32325939\cdot2^{46},-89127\cdot2^{49},7805295\cdot2^{45},-195183\cdot2^{49},-5157\cdot2^{45}, \\ &1621107\cdot2^{47},5157\cdot2^{44},37287\cdot2^{53},-7805295\cdot2^{42},-89127\cdot2^{45}, \\ &-32325939\cdot2^{41},-24620409\cdot2^{41},-5157\cdot2^{41},-89127\cdot2^{43},-7805295\cdot2^{39}, \\ &5866263\cdot2^{39},5157\cdot2^{39},1621107\cdot2^{41},-5157\cdot2^{38},-195183\cdot2^{41}, \\ &-12255165\cdot2^{37},-89127\cdot2^{39},5157\cdot2^{36},32315625\cdot2^{35},5157\cdot2^{35}, \\ &-89127\cdot2^{37},7805295\cdot2^{33},-195183\cdot2^{37},-5157\cdot2^{33},1621107\cdot2^{35}, \\ &32325939\cdot2^{31},37287\cdot2^{41},-7805295\cdot2^{30},-89127\cdot2^{33},-5157\cdot2^{30}, \\ &480951\cdot2^{33},-5157\cdot2^{29},-89127\cdot2^{31},-7805295\cdot2^{27},37287\cdot2^{37}, \\ &32325939\cdot2^{26},1621107\cdot2^{29},-5157\cdot2^{26},-195183\cdot2^{29},7805295\cdot2^{24}, \\ &-89127\cdot2^{27},5157\cdot2^{24},32315625\cdot2^{23},5157\cdot2^{23},-89127\cdot2^{25}, \\ &-12255165\cdot2^{22},-195183\cdot2^{25},-5157\cdot2^{21},1621107\cdot2^{23},5157\cdot2^{20}, \\ &5866263\cdot2^{19},-7805295\cdot2^{18},-89127\cdot2^{21},-5157\cdot2^{18},-24620409\cdot2^{17}, \\ &-32325939\cdot2^{16},-89127\cdot2^{19},-7805295\cdot2^{15},37287\cdot2^{25},5157\cdot2^{15}, \\ &1621107\cdot2^{17},-5157\cdot2^{14},-195183\cdot2^{17},7805295\cdot2^{12},-89127\cdot2^{15}, \\ &32325939\cdot2^{11},32315625\cdot2^{11},5157\cdot2^{11},-89127\cdot2^{13},7805295\cdot2^9, \\ &29192697\cdot2^9,-5157\cdot2^9,1621107\cdot2^{11},5157\cdot2^8,37287\cdot2^{17},12255165\cdot2^7, \\ &-89127\cdot2^9,-5157\cdot2^6,-24620409\cdot2^5,-5157\cdot2^5,-89127\cdot2^7,-7805295\cdot2^3, \\ &37287\cdot2^{13},5157\cdot2^3,1621107\cdot2^5,-64651878,-195183\cdot2^5,7805295, \\ &-89127\cdot2^3,5157,0))=\pi^4\log2 \end{align} $