FANDOM


ゴールドバッハ・オイラーの定理(ゴールドバッハ・オイラーのていり、Goldbach–Euler theorem)はある自然数逆数を項とする級数に関する定理であり、以下の式で表される。

$ \sum_{p}\frac{1}{p-1}= {\frac{1}{3} + \frac{1}{7} + \frac{1}{8}+ \frac{1}{15} + \frac{1}{24} + \frac{1}{26}+ \frac{1}{31}}+ \cdots = 1. $

ただし、pは累乗数(1は含まない)を動くものとする。上の式は、累乗数より1小さい自然数の逆数の無限和が1に収束することを意味する。この定理は1737年にレオンハルト・オイラーがその論文中で初めて述べたものであるが、クリスティアン・ゴールドバッハが彼に宛てた手紙の中でオイラーに明らかにしたとされる(手紙は散逸している)。

収束することの証明

$ \begin{align} & \quad \frac{1}{2^2-1} + \frac{1}{2^3-1} + \frac{1}{3^2-1} + \frac{1}{4^2-1} + \frac{1}{5^2-1} + ... \\ & = \frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} + ... \\ & < \frac{1}{3} + \frac{1}{4} + \frac{1}{8} + \frac{1}{9} + \frac{1}{16} + ... \\ & = \frac{1}{3} + \sum_{m=2}^{\infty} \sum_{k=2}^{\infty} \frac{1}{m^k} \\ & = \frac{1}{3} + \sum_{m=2}^{\infty} \frac{1}{m^2} \sum_{k=0}^{\infty} \frac{1}{m^k} \\ & = \frac{1}{3} + \sum_{m=2}^{\infty} \frac{1}{m^2} \frac{m}{m-1} = \frac{1}{3} + \sum_{m=2}^{\infty} \left( \frac{1}{m-1} - \frac{1}{m} \right) = \frac{1}{3} + 1 = \frac{4}{3}\\ \end{align} $

したがって $ \frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} + ... < \frac{4}{3} $ である。 この級数は単調増加なので $ \frac{4}{3} $ 未満の実数に収束する。

収束値の証明

ゴールドバッハによる証明は以下のように調和級数を用いたものである。まず $ H_{\infty} $ を次のように定義する。

$ H_{\infty} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + ... \quad (1) $

続いて等比級数を用いて以下の式を与える。

$ 1 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + ... $

(1)式からこの式を辺々引くと

$ H_{\infty} - 1 = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{9} + ... \quad (2) $

となる。さらに等比級数を用いて

$ \frac{1}{2} = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + ... $

を導き、この両辺を(2)式から引けば

$ H_{\infty} - 1 - \frac{1}{2} = 1 + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{10} + ... $

このような操作を繰り返すと右辺の1以外の項は全て消えて以下のようになる。

$ H_{\infty} - 1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{5} - \frac{1}{6} - \frac{1}{9} - ... = 1 $

(2)式と左辺が等しくなるように移項すると

$ H_{\infty} - 1 = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{9} + ... \quad (3) $

右辺の項の分母には累乗数より1だけ小さな数は現れないことに注意。最後に(1)式から(3)式を引くと求める級数が得られる。

$ 1 = \frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} + ... $

ただし調和級数 $ H_{\infty} $発散するので、この証明は現代的な観点では厳密なものとはいえない。

注意点

$ \sum_{p}\frac{1}{p-1}\neq\sum_{m=2}^\infty\sum_{k=2}^\infty\frac{1}{m^k-1} $

である。 たとえば、左辺において$ \frac{1}{15} $という項は一度しか登場しないが、右辺においては$ m=4,k=2 $のときと$ m=2,k=4 $のときの2回登場する。このように右辺において被る項が左辺においてはひとつしか存在しないため、

$ \sum_{p}\frac{1}{p-1}<\sum_{m=2}^\infty\sum_{k=2}^\infty\frac{1}{m^k-1} $

が成り立つ。 また、 $ \sum_{p}\frac{1}{p-1}=\sum_{m=2}^\infty\sum_{k=2}^\infty\frac{1}{m^k} $ という等式は、一見左辺のすべての項が右辺の対応する項より大きいために成立しないように思われるが、実際には成り立っている。

外部リンク

関連項目